Material Data Sheet



# EOS Nickel Alloy 1N625

Nickel Alloy for Various Applications in Cryogenic to Elevated Temperatures

## EOS NickelAlloy IN625

## High Strength and Corrosion Resistance in Cryogenic to Elevated Temperatures

EOS NickelAlloy IN625 is a solid solution strengthened nickel-chromium-molybdenum-niobium alloy used for diverse applications requiring high strength as well as corrosion and/or oxidation resistance.

EOS NickelAlloy IN625 is a nickel alloy powder intended for manufacturing parts on EOS metal systems with EOS DMLS processes.

#### Main Characteristics:

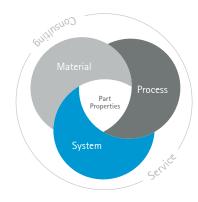
- Combination of high strength and ductility at ambient and elevated temperatures
- → Good corrosion resistance in a variety of environments
- → Oxidation resistance
- Good fabricability

#### Typical Applications:

- Various applications, from cryogenic to elevated temperatures
- → Parts for chemical processing
- Gas turbine components
- → Parts in sea water service
- High performance automotive engine parts

#### The EOS Quality Triangle

EOS uses an approach that is unique in the AM industry, taking each of the three central technical elements of the production process into account: the system, the material and the process. The data resulting from each combination is assigned a Technology Readiness Level (TRL) which makes the expected performance and production capability of the solution transparent.


EOS incorporates these TRLs into the following two categories:

- Premium products (TRL 7-9): offer

highly validated data, proven capability and reproducible part properties.

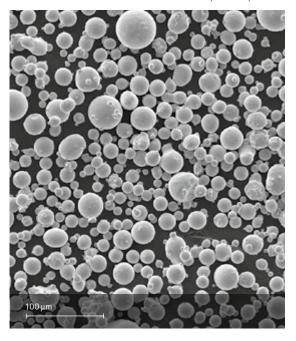
- Core products (TRL 3 and 5): enable early customer access to newest technology still under development and are therefore less mature with less data.

All of the data stated in this material data sheet is produced according to EOS Quality Management System and international standards.



#### **Powder Properties**

Powder and built part compositions meet the chemical composition requirements of UNS N06625, AMS 7000, AMS 7001, ASTM F3055, W.Nr 2.4856, and DIN NiCr22Mo9Nb.


#### Powder chemical composition (wt.-%)

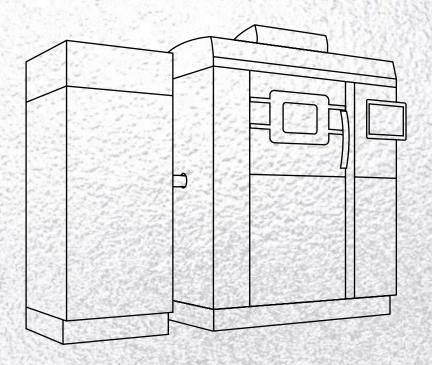
| Element | Min.  | Max.  |  |
|---------|-------|-------|--|
| Cr      | 20.00 | 23.00 |  |
| Мо      | 8.00  | 10.00 |  |
| Nb      | 3.15  | 4.15  |  |
| Fe      | -     | 5.00  |  |
| Ti      | -     | 0.40  |  |
| Al      | -     | 0.40  |  |
| Со      | -     | 1.00  |  |
| Si      | -     | 0.50  |  |
| Mn      | -     | 0.50  |  |
| С       | -     | 0.10  |  |
| Та      | -     | 0.05  |  |
| P       | -     | 0.015 |  |
| S       | -     | 0.015 |  |
| Ni      | Bal   | Bal   |  |

#### Powder particle size

Generic particle size distribution 15-60 µm

SEM picture of EOS NickelAlloy IN625 powder.




#### **Heat Treatment**

EOS NickelAlloy IN625 can be used for many applications in the stress relieved condition, which is typically performed at 870 °C (1600 °F). Note that this heat treatment does not solutionise the alloy.

#### Step 1:

Stress relieve at 870 °C (1600 °F) for 1 hour followed by rapid cooling.





## EOS NickelAlloy IN625 for EOS M 290 | 40 μm

Process Information
Physical Part Properties
Mechanical Properties
Additional Data

## EOS Nickel Alloy IN625 for EOS M 290 | 40 $\mu m$ Process Information

| System set-up          | EOS M 290                                      |
|------------------------|------------------------------------------------|
| EOSPAR name            | IN625_Performance M291 2.00                    |
| Software requirements  | EOSPRINT 2.5 or newer<br>EOSYSTEM 2.5 or newer |
| Powder part no.        | 9011-0022                                      |
| Recoater blade         | EOS HSS Blade                                  |
| Nozzle                 | EOS Grid Nozzle                                |
| Inert gas              | Argon                                          |
| Sieve                  | 63 µm                                          |
|                        |                                                |
| Additional information |                                                |
| Layer thickness        | 40 μm                                          |
| Volume rate            | 4.2 mm³/s                                      |



## Chemical and Physical Properties of Parts<sup>1</sup>



Micrograph of polished surface. Heat treated.

| Defects                   | Result  |
|---------------------------|---------|
| Average defect percentage | 0.011 % |

#### **Modulus of Elasticity**

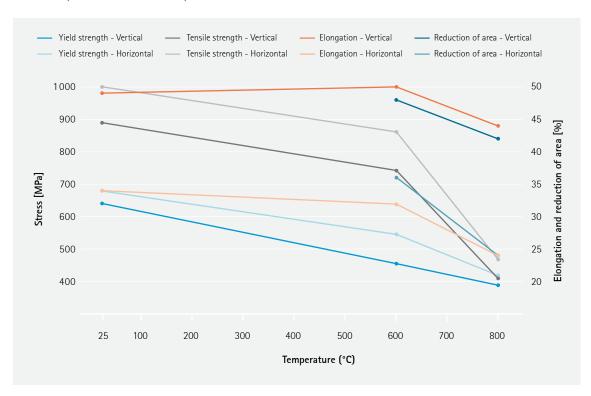
#### EN ISO 6892-1 Method A, Range 1 (0.00007 1/s)

| State            | Heat treated |  |
|------------------|--------------|--|
| Vertical [GPa]   | 204          |  |
| Horizontal [GPa] | 214          |  |



#### **Mechanical Properties**

Tensile properties heat treated according to ISO 6892-1,  $L_0 = 4.d_0$ 


|            | Yield strength  R <sub>p0.2</sub> [MPa] | Tensile strength  R <sub>m</sub> [MPa] | Elongation at break<br>A [%] |
|------------|-----------------------------------------|----------------------------------------|------------------------------|
| Vertical   | 640                                     | 890                                    | 49                           |
| Horizontal | 680                                     | 1000                                   | 34                           |



Tolerance intervals provide lower bounds where 90 % of the population falls with 95 % confidence. Tolerance intervals are based on validation data / QA statistics. Heat treated state.



#### Tensile Properties at Elevated Temperatures



Elevated temperature tensile properties in heat-treated condition. Testing according to ISO 6892-1,  $L_0 = 4.d_o$ .

## Tensile properties as manufactured according to ISO 6892–1, $L_{\rm o}$ = 4.d $_{\rm o}$

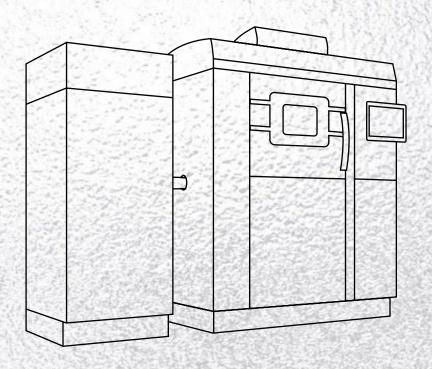
|            | Yield strength R <sub>p0.2</sub> [MPa] | Tensile strength<br>R <sub>m</sub> [MPa] | Elongation at break<br>A [%] |
|------------|----------------------------------------|------------------------------------------|------------------------------|
| Vertical   | 630                                    | 870                                      | 48                           |
| Horizontal | 720                                    | 980                                      | 33                           |

| Hardness as per ISO 6508 |    |
|--------------------------|----|
| Hardness, HRC            | 27 |

#### Additional Data<sup>1</sup>



#### Stress Rupture Performance


Sample condition: heat treated ASTM E139,  $L_0 = 4.d_0$ 

|            | Stress<br>[MPa] | Temperature<br>[°C] | Time to rupture<br>[h] | Elongation<br>[%] | <b>RA</b><br>[%] |
|------------|-----------------|---------------------|------------------------|-------------------|------------------|
| Vertical   | 131             | 816                 | 231                    | 6.5               | 4.5              |
| Horizontal | 131             | 816                 | 132                    | 6.5               | 5                |

#### Surface Roughness

| Horizontal surface | Ra 1-5 μm |
|--------------------|-----------|
| Vertical surface   | RA 1-5 μm |





## EOS NickelAlloy IN625 for EOS M 290 | 40 μm HiPro

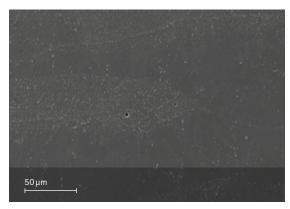
Process Information
Physical Part Properties
Mechanical Properties
Additional Data

#### EOS Nickel Alloy IN625 for EOS M 290 | 40 $\mu m$ HiPro

#### **Process Information**

Basic 40 µm exposure set for building parts with good mechanical performance and higher productivity than IN625\_040\_PerformanceM291\_200.




| EOS M 290                                        |
|--------------------------------------------------|
| IN625_040_080_HiProM291_1xx                      |
| EOSPRINT 2.14 or newer<br>EOSYSTEM 2.18 or newer |
| 9011-0022                                        |
| EOS HSS Blade                                    |
| EOS Grid Nozzle                                  |
| Argon                                            |
| 63 μm                                            |
|                                                  |

| Additional information |           |
|------------------------|-----------|
| Layer thickness        | 40 μm     |
| Volume rate            | 5.7 mm³/s |



## Chemical and Physical Properties of Parts<sup>1</sup>





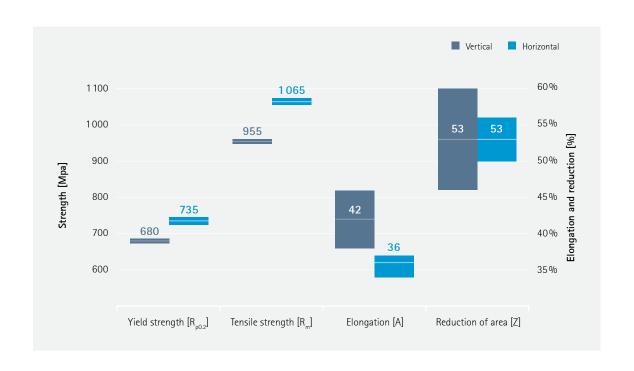
Etched microstructure and SEM. Heat treated.

| Defects                   | Result |
|---------------------------|--------|
| Average defect percentage | 0.05 % |

#### Modulus of Elasticity

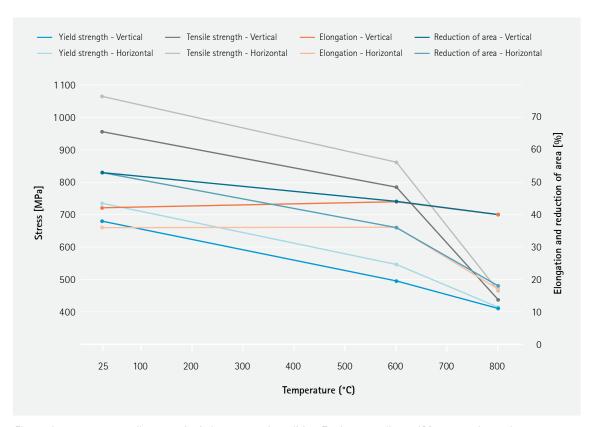
#### EN ISO 6892-1 Method A, Range 1 (0.00007 1/s)

| State            | Heat treated |
|------------------|--------------|
| Vertical [GPa]   | 206          |
| Horizontal [GPa) | 204          |




#### Mechanical Properties<sup>1</sup>

## Tensile properties heat treated according to ISO6892-1, $L_{0} = 4.d_{0}$


|            | <b>Yield strength</b><br>R <sub>p0.2</sub> [MPa] |      | Elongation at break<br>A [%] | Reduction of area |
|------------|--------------------------------------------------|------|------------------------------|-------------------|
| Vertical   | 680                                              | 955  | 42                           | 53                |
| Horizontal | 735                                              | 1065 | 36                           | 53                |

| Hardness as per ISO 6508 |    |  |  |  |
|--------------------------|----|--|--|--|
| Hardness, HRC            | 28 |  |  |  |





#### Tensile Properties at Elevated Temperatures

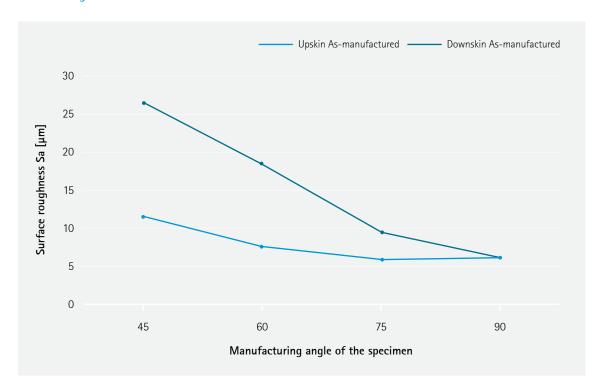


Elevated temperature tensile properties in heat-treated condition. Testing according to ISO 6892-1,  $L_0 = 4.d_o$ .

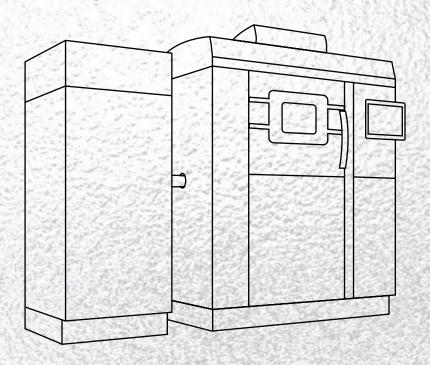
## Tensile properties as manufactured according to ISO 6892–1, $L_0 = 4.d_0$

|            | Yield strength R <sub>p0.2</sub> [MPa] | Tensile strength R <sub>m</sub> [MPa] | Elongation at break<br>A [%] | Reduction of area |
|------------|----------------------------------------|---------------------------------------|------------------------------|-------------------|
| Vertical   | 645                                    | 900                                   | 43                           | 62                |
| Horizontal | 750                                    | 1020                                  | 36                           | 55                |

## Additional Data<sup>1</sup>




#### Stress Rupture Performance


Sample condition: heat treated ASTM E139,  $L_0 = 4.d_0$ 

|            | Stress<br>[MPa] | Temperature<br>[°C] | Time to rupture<br>[h] | Elongation<br>[%] | <b>RA</b><br>[%] |
|------------|-----------------|---------------------|------------------------|-------------------|------------------|
| Vertical   | 131             | 816                 | 134                    | 9                 | 6,5              |
| Horizontal | 131             | 816                 | 92                     | 11                | 5                |

#### **Surface Roughness**

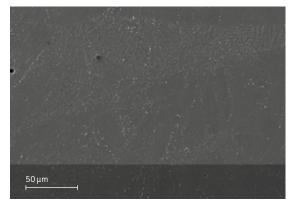






## EOS NickelAlloy IN625 for EOS M 290 | 80 μm HiPro

Process Information
Physical Part Properties
Mechanical Properties
Additional Data


## EOS NickelAlloy IN625 for EOS M 290 | 80μm HiPro Process Information

| System set-up          | EOS M 290                                        |  |  |  |
|------------------------|--------------------------------------------------|--|--|--|
| EOSPAR name            | IN625_040_080_HiProM291_1xx                      |  |  |  |
| Software requirements  | EOSPRINT 2.14 or newer<br>EOSYSTEM 2.18 or newer |  |  |  |
| Powder part no.        | 9011-0022                                        |  |  |  |
| Recoater blade         | EOS HSS Blade                                    |  |  |  |
| Nozzle                 | EOS Grid Nozzle                                  |  |  |  |
| Inert gas              | Argon                                            |  |  |  |
| Sieve                  | 63 μm                                            |  |  |  |
|                        |                                                  |  |  |  |
| Additional information |                                                  |  |  |  |
| Layer thickness        | 80 μm                                            |  |  |  |
| Volume rate            | 9.2 mm³/s                                        |  |  |  |



## Chemical and Physical Properties of Parts<sup>1</sup>





Etched microstructure and SEM. Heat treated.

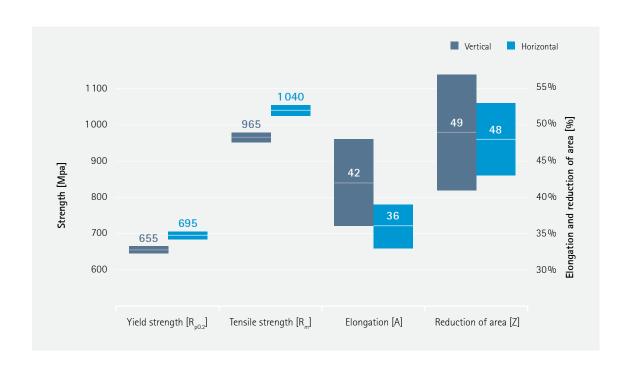
| Defects                   | Result |
|---------------------------|--------|
| Average defect percentage | 0.03 % |

#### Modulus of Elasticity

#### EN ISO 6892-1 Method A, Range 1 (0.00007 1/s)

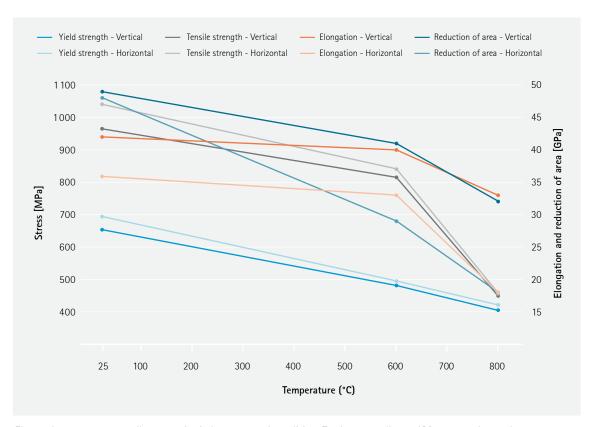
| State            | Heat treated |
|------------------|--------------|
| Vertical [GPa]   | 212          |
| Horizontal [GPa] | 200          |






Tensile properties heat treated according to ISO6892-1,  $L_{0} = 4.d_{0}$ 

|            | <b>Yield strength</b><br>R <sub>p0.2</sub> [MPa] |      | Elongation at break<br>A [%] | Reduction of area |
|------------|--------------------------------------------------|------|------------------------------|-------------------|
| Vertical   | 655                                              | 965  | 42                           | 49                |
| Horizontal | 695                                              | 1040 | 36                           | 48                |


Hardness as per ISO 6508

| Hardness, HRC | 27 |
|---------------|----|





#### Tensile Properties at Elevated Temperatures

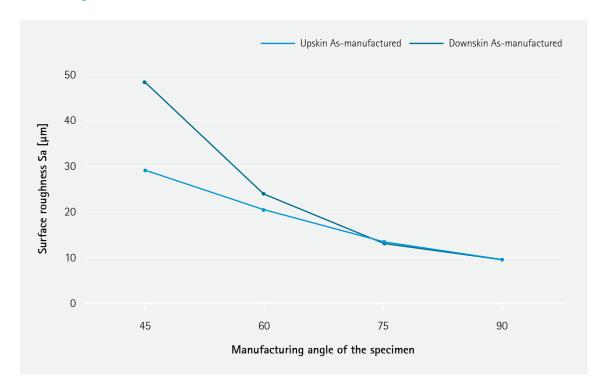


Elevated temperature tensile properties in heat-treated condition. Testing according to ISO 6892-1,  $L_0 = 4.d_o$ .

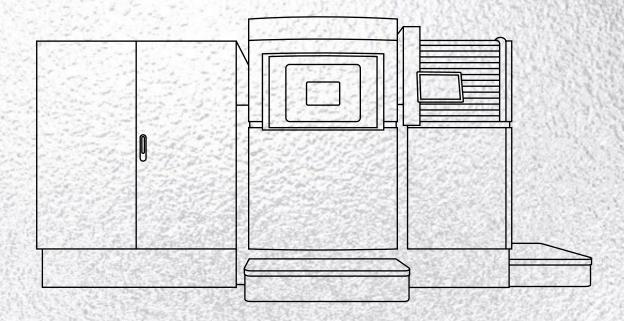
## Tensile properties as manufactured according to ISO 6892-1, $L_0 = 4.d_0$

|            | Yield strength R <sub>p0.2</sub> [MPa] |     |    | Reduction of area [%] |
|------------|----------------------------------------|-----|----|-----------------------|
| Vertical   | 645                                    | 940 | 44 | 63                    |
| Horizontal | 720                                    | 995 | 39 | 56                    |

#### Additional Data<sup>1</sup>




#### Stress Rupture Performance


Sample condition: heat treated ASTM E139,  $L_0 = 4.d_0$ 

|            | Stress<br>[MPa] | Temperature<br>[°C] | Time to rupture<br>[h] | Elongation [%] | <b>RA</b><br>[%] |
|------------|-----------------|---------------------|------------------------|----------------|------------------|
| Vertical   | 131             | 816                 | 54                     | 9              | 6                |
| Horizontal | 131             | 816                 | 28                     | 9,5            | 7,5              |

#### **Surface Roughness**





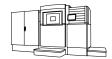


## EOS NickelAlloy IN625 for EOS M 400-4 | 40 μm HiPro

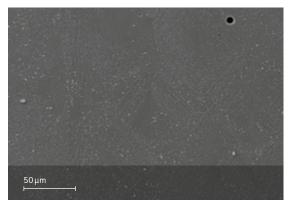
Process Information
Physical Part Properties
Mechanical Properties
Additional Data

#### EOS Nickel Alloy IN625 for EOS M 400–4 | 40 $\mu m$ HiPro

#### **Process Information**


This process parameter includes two variations of the exposure set: the first one provides better productivity while the second one enables low angle buildability down to 20° at least¹. The low angle buildability can be optimized further through the part geometry and the length of overhang.




| System set-up         | EOS M 400-4                                      |  |  |
|-----------------------|--------------------------------------------------|--|--|
| EOSPAR name           | IN625_040_080_HiProM404_1xx                      |  |  |
| Software requirements | EOSPRINT 2.14 or newer<br>EOSYSTEM 2.18 or newer |  |  |
| Powder part no.       | 9011-0022                                        |  |  |
| Recoater blade        | EOS HSS Blade                                    |  |  |
| Nozzle                | Aerospike V2                                     |  |  |
| Inert gas             | Argon                                            |  |  |
| Sieve                 | 63 μm                                            |  |  |

| Additional information |               |  |  |
|------------------------|---------------|--|--|
| Layer thickness        | 40 μm         |  |  |
| Volume rate            | 4 x 5.7 mm³/s |  |  |

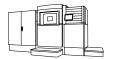
## Chemical and Physical Properties of Parts<sup>1</sup>







Etched microstructure and SEM. Heat treated.

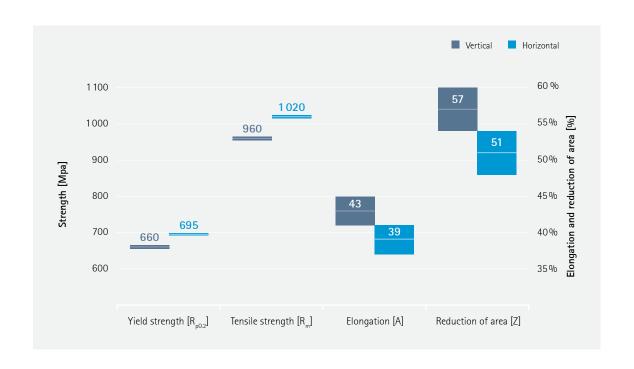

| Defects                   | Result |
|---------------------------|--------|
| Average defect percentage | 0.04 % |

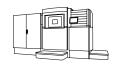
#### Modulus of Elasticity

#### EN ISO 6892-1 Method A, Range 1 (0.00007 1/s)

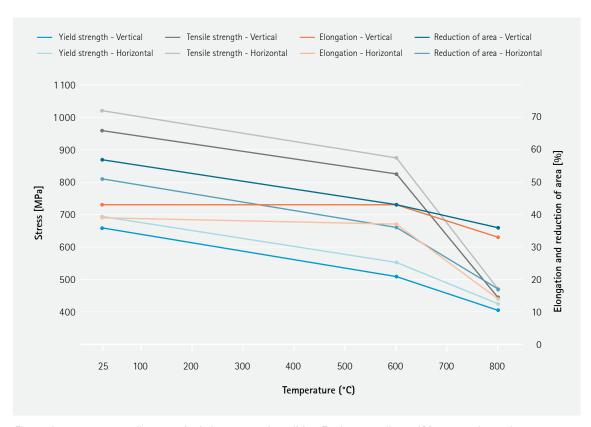
| State            | Heat treated |
|------------------|--------------|
| Vertical [GPa]   | 201          |
| Horizontal [GPa] | 213          |

#### Mechanical Properties<sup>1</sup>





Tensile properties heat treated according to ISO6892-1,  $L_{\rm o}$  = 4.d $_{\rm o}$ 

|            | Yield strength R <sub>p0.2</sub> [MPa] | Tensile strength<br>R <sub>m</sub> [MPa] | Elongation at break | Reduction of area |
|------------|----------------------------------------|------------------------------------------|---------------------|-------------------|
| Vertical   | 660                                    | 960                                      | 43                  | 57                |
| Horizontal | 695                                    | 1020                                     | 39                  | 51                |

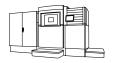

Hardness as per ISO 6508

| Hardness, HRC | 26 |
|---------------|----|

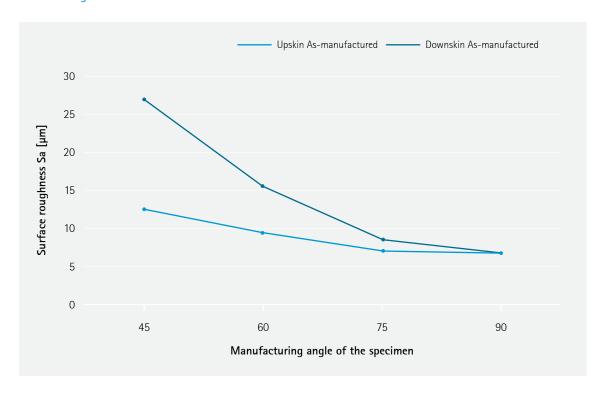




#### Tensile Properties at Elevated Temperatures




Elevated temperature tensile properties in heat-treated condition. Testing according to ISO 6892-1,  $L_0 = 4.d_o$ .

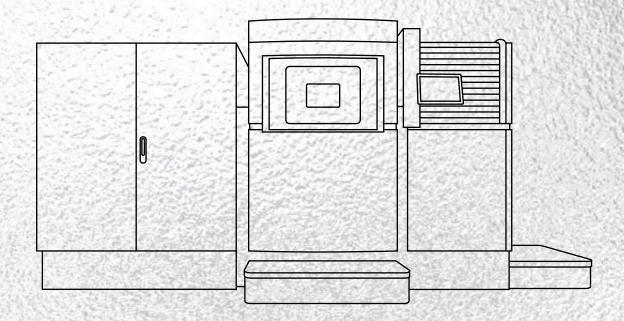

## Tensile properties as manufactured according to ISO 6892-1, $L_0 = 4.d_0$

|            | Yield strength R <sub>p0.2</sub> [MPa] | Tensile strength<br>R <sub>m</sub> [MPa] | Elongation at break<br>A [%] | Reduction of area [%] |
|------------|----------------------------------------|------------------------------------------|------------------------------|-----------------------|
| Vertical   | 655                                    | 945                                      | 40                           | 55                    |
| Horizontal | 760                                    | 1030                                     | 34                           | 46                    |

#### Additional Data<sup>1</sup>



#### **Surface Roughness**




#### Creep Performance According to ASTM E139, $L_{\rm o}$ = 4.d<sub>o</sub>

Sample condition: heat treated ASTM E139,  $L_0 = 4.d_0$ 

|            | Stress<br>[MPa] | Temperature<br>[°C] | Time to rupture<br>[h] | Elongation<br>[%] | <b>RA</b><br>[%] |
|------------|-----------------|---------------------|------------------------|-------------------|------------------|
| Vertical   | 131             | 816                 | 134                    | 9                 | 6.5              |
| Horizontal | 131             | 816                 | 92                     | 11                | 5                |

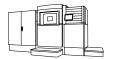




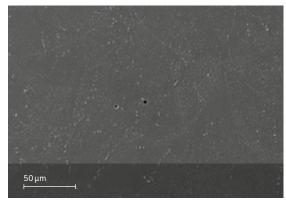
## EOS NickelAlloy IN625 for EOS M 400-4 | 80 μm HiPro

Process Information
Physical Part Properties
Mechanical Properties
Additional Data

#### EOS Nickel Alloy IN625 for EOS M 400–4 | 80 $\mu m$ HiPro


#### **Process Information**

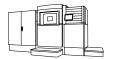
This process provides high productivity with a volume rate that is 61% faster than IN625 40  $\mu m$  HiPro process.


| System set-up         | EOS M 400-4                                      |  |  |
|-----------------------|--------------------------------------------------|--|--|
| EOSPAR name           | IN625_040_080_HiProM404_1xx                      |  |  |
| Software requirements | EOSPRINT 2.14 or newer<br>EOSYSTEM 2.18 or newer |  |  |
| Powder part no.       | 9011-0022                                        |  |  |
| Recoater blade        | EOS HSS Blade                                    |  |  |
| Nozzle                | Aerospike V2                                     |  |  |
| Inert gas             | Argon                                            |  |  |
| Sieve                 | 63 μm                                            |  |  |

| Additional information |                                  |  |
|------------------------|----------------------------------|--|
| Layer thickness        | 80 μm                            |  |
| Volume rate            | up to 4 x 9.2 mm <sup>3</sup> /s |  |

## Chemical and Physical Properties of Parts<sup>1</sup>



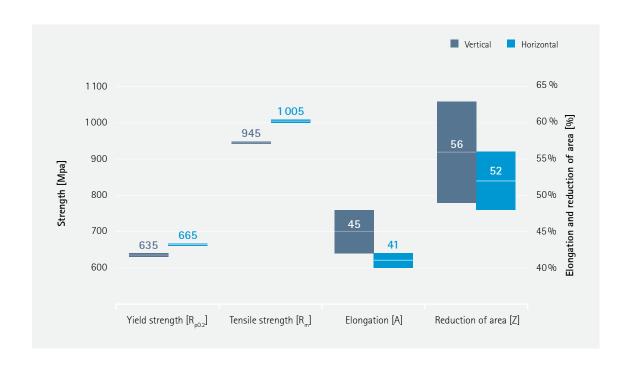


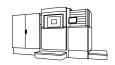



Etched microstructure and SEM. Heat treated.

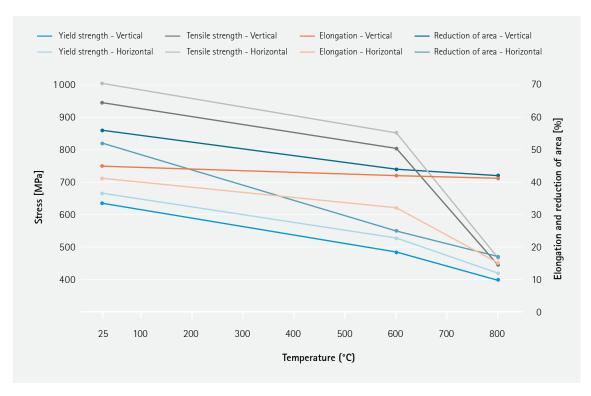
| Defects                   | Result |
|---------------------------|--------|
| Average defect percentage | 0.02 % |

#### Mechanical Properties<sup>1</sup>





Tensile properties heat treated according to ISO6892-1,  $L_{\rm o}$  = 4.d $_{\rm o}$ 

|            | Yield strength R <sub>p0.2</sub> [MPa] | Tensile strength R <sub>m</sub> [MPa] | Elongation at break | Reduction of area |
|------------|----------------------------------------|---------------------------------------|---------------------|-------------------|
| Vertical   | 635                                    | 945                                   | 45                  | 56                |
| Horizontal | 665                                    | 1005                                  | 41                  | 52                |

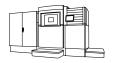

Hardness as per ISO 6508

| Hardness, HRC | 27 |
|---------------|----|

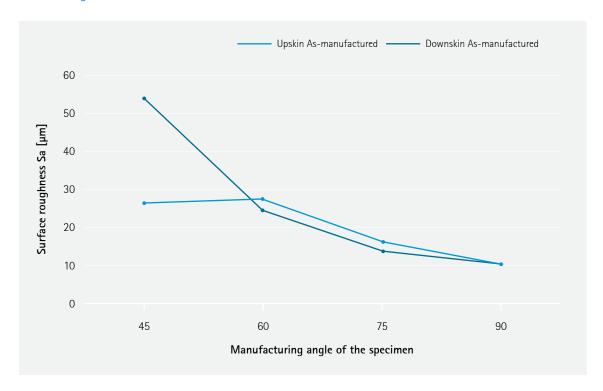




#### Tensile Properties at Elevated Temperatures




Elevated temperature tensile properties in heat-treated condition. Testing according to ISO 6892-1,  $L_0 = 4.d_o$ .


## Tensile properties as manufactured according to ISO 6892–1, $L_0 = 4.d_0$

|            | Yield strength R <sub>p0.2</sub> [MPa] | Tensile strength R <sub>m</sub> [MPa] | Elongation at break<br>A [%] | Reduction of Area [%] |
|------------|----------------------------------------|---------------------------------------|------------------------------|-----------------------|
| Vertical   | 630                                    | 930                                   | 45                           | 60                    |
| Horizontal | 715                                    | 1005                                  | 37                           | 48                    |

#### Additional Data<sup>1</sup>



#### **Surface Roughness**



#### Creep Performance According to ASTM E139, $L_{\rm o}$ = 4.d<sub>o</sub>

Sample condition: heat treated ASTM E139,  $L_0 = 4.d_0$ 

|            | Stress<br>[MPa] | Temperature<br>[°C] | Time to rupture<br>[h] | Elongation<br>[%] | <b>RA</b><br>[%] |
|------------|-----------------|---------------------|------------------------|-------------------|------------------|
| Vertical   | 131             | 816                 | 105                    | 8                 | 6.5              |
| Horizontal | 131             | 816                 | 63                     | 12.5              | 12               |

#### Headquarters

www.eos.info

EOS GmbH Electro Optical Systems Robert-Stirling-Ring 1 D-82152 Krailling/Munich Germany Phone +49 89 893 36-0 info@eos.info

in EOS

X EOS3Dprinting

■ EOS3Dprinting

#responsiblemanufacturing

Further Offices

#futureisadditive

EOS France Phone +33 437 497 676

EOS Greater China Phone +86 21 602 307 00

EOS India Phone +91 443 964 8000

EOS Italy Phone +39 023 340 1659

EOS Japan Phone +81 45 670 0250

EOS Korea Phone +82 2 6330 5800

EOS Nordic & Baltic Phone +46 31 760 4640

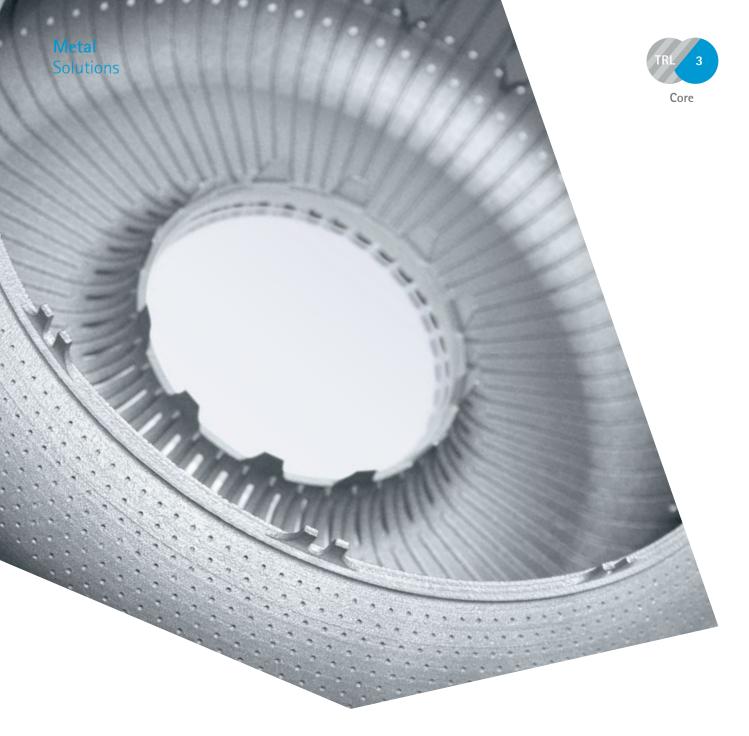
EOS of North America Phone +1 877 388 7916

EOS Singapore Phone +65 6430 0463

EOS UK Phone +44 1926 675 110

<sup>1</sup> Part properties are provided for information purposes only and EOS makes no representation or warranty, and disclaims any liability, with respect to actual part properties achieved. Part properties are dependent on a variety of influencing factors and therefore, actual part properties achieved by the user may deviate from the information stated herein.

This document does not on its own represent a sufficient basis for any part design, neither does it provide any agreement or guarantee about the specific properties of a material or part or the suitability of a material or a part for a specific application. The achievement of certain part properties as well as the assessment of the suitability of this material for a specific purpose is the sole responsibility of the user.


Any information given herein is subject to change without notice.

Status 07/2024

EOS is certified according to ISO 9001. EOS® and EOSPRINT® are registered trademarks of EOS GmbH in some countries. For more information visit www.eos.info/trademarks.

Cover: This image shows a possible application.





EOS NickelAlloy IN625 for EOS M 300-4



## EOS NickelAlloy IN625 EOS M 300-4 | 40 μm

EOS NickelAlloy IN625 is a heat and corrosion resistant nickel alloy powder which has been optimized especially for processing on DMLS systems.



Project Partner Materials Solutions, EOS

#### Main Characteristics

- High tensile, creep and rupture strength
- Heat and corrosion resistant
- Chemical composition corresponding to UNS N06625, AMS 5666F, AMS 5599G, W.Nr 2.4856, DIN NiCr22Mo9Nb.

#### Typical Applications

- Racing applications
- Gas turbines in aerospace and energy
- Ship building industry

#### Headquarters

EOS GmbH Electro Optical Systems Robert-Stirling-Ring 1 D-82152 Krailling/Munich Phone +49 89 893 36-0 info@eos.info

#### www.eos.info

in EOS

**y** EOSGmbH

@ EOS.global

**■** EOSGmbH

#ShapingFuture

#ResponsibleManufacturing

Further Offices

**EOS France** Phone +33 437 497 676

EOS Greater China Phone +86 21 602 307 00

EOS India

Phone +91 443 964 8000

Phone +39 023 340 1659

EOS Japan

Phone +81 45 670 0250

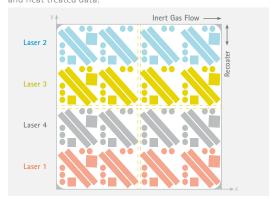
EOS Korea

Phone +82 2 6330 5800

EOS Nordic & Baltic Phone +46 31 760 4640

EOS North America Phone +1 877 388 7916

EOS Singapore Phone +65 6430 0463


Phone +44 1926 675 110

#### **Product Information**

| DMLS System    | EOS M 300-4                      |
|----------------|----------------------------------|
| Material       | EOS NickelAlloy IN625            |
| Process        | 40 μm layer thickness            |
| Inert Gas      | Argon                            |
| Recoater blade | HSS, two-sided recoating         |
| Volume rate    | up to 4 x 4.2 mm <sup>3</sup> /s |

#### Layout of test job

Part properties based on 2 test jobs each for as manufactured and heat treated data.



| Typical part properties       | Yield strength<br>R <sub>p0.2</sub> [MPa] | Tensile strength $R_{_{m}}$ [MPa] | Elongation at break<br>A [%] | Number of samples |
|-------------------------------|-------------------------------------------|-----------------------------------|------------------------------|-------------------|
| As manufactured vertical      | 611                                       | 852                               | 48.2                         | 160               |
| As manufactured<br>horizontal | 750                                       | 1030                              | 32.9                         | 64                |
| Heat treated<br>vertical      | 606                                       | 862                               | 52.1                         | 160               |
| Heat treated<br>horizontal    | 692                                       | 1 041                             | 35.6                         | 64                |
| Max. pore size                | 50 μm                                     |                                   |                              | 64                |
| Porosity                      | 0.006 %                                   |                                   |                              | 64                |

Mechanical properties tested according to EN ISO 6892-1 B10. The values in the table are average values and dependent on the thermal load of the job layout as well as the position on the build plate. Heat treatment procedure: anneal at 870 °C (1600 °F) for 1 hour, rapid cooling

Status 02/2022

EOS is certified according to ISO 9001. EOS®, DMLS® and EOSPRINT® are registered trademarks of EOS GmbH Electro Optical Systems in some countries. For more information visit www.eos.info/trademarks.

Part properties stated above are provided for information purposes only and EOS makes no representation or warranty whatsoever, and disclaims any liability, with respect to actual part properties achieved with this material. Part properties are subject to variation and dependent on factors such as system parameters, process and test geometries. Therefore actual part properties may deviate and users of this material are exclusively responsible to determine its suitability for the intended use. The part properties stated above have been determined by testing this material with above specified type of EOS Laser Powder Bed Fusion system, EOSYSTEM and EOSPRINT software version, parameter set and operation in compliance with parameter sheet and operating instructions. Part properties are measured with specified measurement methods using defined test geometries and procedures. Further details of the test procedures used by EOS are available on request.

This data sheet specifies the powder properties of the EOS powder type referenced above. If you purchase powder from EOS, EOS will deliver such powder in conformity with the version of this data sheet prevailing at the time of your order. If you purchase powder from any source other than EOS, EOS makes no warranties or representations with respect to powder properties to you whatsoever, and claims with respect to the quality or properties of EOS powder are available only against the seller of such powder in accordance with your agreement with the seller, not against EOS. EOS data sheets are subject to change without notice. This data sheet does not constitute a guaranty or warranty of properties or fitness for a specific purpose and may not be relied upon as such

